An ellipse is a closed curve in the plane that is defined as the set of all points the sum of whose distances from two fixed points is a constant. This constant is also the distance between the vertices of the ellipse and it is called the major axis. Half the distance is called the semi-major axis and this is denoted by \(a\). The distance \(b\) (shown in the figure) is called the semi-minor axis.

Algebraically, an ellipse in the Cartesian plane with horizontal major axis is a relation defined by an equation of the form


where the point \((h,k)\) is the center of the ellipse and \(a\) and \(b\) are the lengths of the semi-major and semi-minor axes. If the major axis of the ellipse is vertical we swap the roles of \(a\) and \(b\). If \(a=b\) then the ellipse is a circle.

Figure 1: An ellipse in the Cartesian plane.

An ellipse also has directices and important reflection properties. See the article on conics for an exposition.

Citation Info

  • [MLA] “ellipse.” Platonic Realms Interactive Mathematics Encyclopedia. Platonic Realms, 27 Mar 2013. Web. 27 Mar 2013. <>
  • [APA] ellipse (27 Mar 2013). Retrieved 27 Mar 2013 from the Platonic Realms Interactive Mathematics Encyclopedia:


Get the ultimate math study-guide Math & Me: Embracing Successproduct thumbnail image Available in the Math Store
detail from Escher pic Belvedere

Are you a mathematical artist?

Platonic Realms is preparing an online gallery space to showcase and market the works of painters, sculptors, and other artists working in a tangible medium.

If your work celebrates mathematical themes we want to hear from you!

Please let us know about yourself using the contact page.