# arcsine

The inverse of the sine function, usually abbreviated arcsin. It is defined on the restricted domain \([-1,1]\), such that for any real number \(x \in [-1,1]\), \(\arcsin(x)=a\) if and only if \(\sin(a)=x\). The principal arcsine takes its values in the interval \(\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\).

Arcsine may also be abbreviated by asin or sin^{-1}.

- [MLA] “arcsine.”
*Platonic Realms Interactive Mathematics Encyclopedia.*Platonic Realms, 21 Feb 2013. Web. 21 Feb 2013. <http://platonicrealms.com/> - [APA] arcsine (21 Feb 2013). Retrieved 21 Feb 2013 from the
*Platonic Realms Interactive Mathematics Encyclopedia:*http://platonicrealms.com/encyclopedia/arcsine/