PRIME

Platonic

Realms

Interactive

Mathematics

Encyclopedia

 

cardinal arithmetic

Cardinal arithmetic is distinct from ordinal arithmetic in the case of transfinite numbers. Let \(\alpha\) and \(\beta\) denote cardinals and let \(A\) and \(B\) denote disjoint sets such that \(\alpha = \left| A \right|\) and \(\beta = \left| B \right|\). Denote by \(A^B\) the set of all functions from \(B\) to \(A\), and by \(A\times B\) the Cartesian product of \(A\) and \(B\). The operations of cardinal arithmetic are then defined by

  • \(\alpha + \beta = \left| A \cup B \right|\),
  • \(\alpha \beta = \left|A \times B\right|\), and
  • \(\alpha^{\beta} = \left|A^B\right|\).

Note for instance that if \(A\) or \(B\) is infinite then \(\alpha + \beta\) is just the larger of \(\alpha\) or \(\beta\).

Citation Info

  • [MLA] “cardinal arithmetic.” Platonic Realms Interactive Mathematics Encyclopedia. Platonic Realms, 20 Mar 2013. Web. 20 Mar 2013. <http://platonicrealms.com/>
  • [APA] cardinal arithmetic (20 Mar 2013). Retrieved 20 Mar 2013 from the Platonic Realms Interactive Mathematics Encyclopedia: http://platonicrealms.com/encyclopedia/cardinal-arithmetic/

Advertisement

Get the ultimate math study-guide Math & Me: Embracing Successproduct thumbnail image Available in the Math Store
detail from Escher pic Belvedere

Are you a mathematical artist?

Platonic Realms is preparing an online gallery space to showcase and market the works of painters, sculptors, and other artists working in a tangible medium.

If your work celebrates mathematical themes we want to hear from you!

Please let us know about yourself using the contact page.